0(t)=-16t^2+112t+25

Simple and best practice solution for 0(t)=-16t^2+112t+25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0(t)=-16t^2+112t+25 equation:



0(t)=-16t^2+112t+25
We move all terms to the left:
0(t)-(-16t^2+112t+25)=0
We add all the numbers together, and all the variables
-(-16t^2+112t+25)+t=0
We get rid of parentheses
16t^2-112t+t-25=0
We add all the numbers together, and all the variables
16t^2-111t-25=0
a = 16; b = -111; c = -25;
Δ = b2-4ac
Δ = -1112-4·16·(-25)
Δ = 13921
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-111)-\sqrt{13921}}{2*16}=\frac{111-\sqrt{13921}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-111)+\sqrt{13921}}{2*16}=\frac{111+\sqrt{13921}}{32} $

See similar equations:

| 19=k+11 | | 7x-6-8x=3 | | x+3(3)=25 | | s-68=11;s=79 | | 3.24+0.14x=157.24 | | 11/5+p=-21/3 | | 3x*x=44 | | 3y^2y-4=0 | | 4u+22=2(u+8) | | 7x+6-x=9x-2(x-3) | | 4(4x+5)=19x+16-3x+4 | | -4(-1y+10)=-36 | | (-1)+(-4x)+2+2x+x=-2 | | 2x^2+29x=105 | | 87+51+(2+8x)=180 | | b/14=15 | | Y=-7;18=7y-3 | | 7^6x=2401 | | Y=8;18=7y-3 | | 79=(8x-3)+(5x+3) | | -28+w=14 | | 150m-100m+45000=43425-175m | | 34+x=-901 | | 38=5(2b-3)×3b+1 | | 8(c–3)=96 | | 19(f+2)=12f-15 | | -6x-8+15x=46 | | 4x+-17=11 | | 1.2x10-5=(x)(2x+0.2)2 | | 5m+9=3(m+-5)+7 | | 5x3=24- | | 2.5(n)=5 |

Equations solver categories